
MA 1118 - Multivariable Calculus
Exam I - Quarter I - AY 02-03

Instructions: Work all problems. Read the problems carefully. Show appropriate work, as
partial credit will be given. One Page, 8-1/2 by 11, hand-written, one-side notes permitted.
No scientific calculators or other notes or tables allowd.

1. (25 Points) Determine whether the given sequence converges or diverges. If the sequence
diverges, state why. If the sequence converges, find the limit.

(a) an =
n3 + 3n+ 1

(n2 + 1)(4n+ 2)

solution:

Basically, all we need to do is observe that, for “large” n,

an =
n3 + 3n+ 1

(n2 + 1)(4n+ 2)
→ n3

(n2)(4n)
=
n3

4n3
=
1

4

i.e. lim
n→∞ an =

1

4
. (We could also determine this using L’Hospital’s rule.)

(b) an =
n

ln (1 + e3n)

solution:

If we observe that, by definition, x = ln (ex), and so, for “large” n,

an =
n

ln (1 + e3n)
→ n

ln (e3n)
=
n

3n
=
1

3

we would be done, i.e. lim
n→∞ an =

1

3
. However, seeing this may require a bit of

luck as well as skill. What should be clear is that, for “large” n, an →∞/∞,
and therefore we can apply L’Hospital’s rule directly. Specifically

lim
n→∞ an = lim

x→∞
x

ln (1 + e3x)
= lim

x→∞
1

3e3x

1+e3x

= lim
x→∞

1 + e3x

3e3x
= lim

x→∞
3e3x

9e3x
=

3

9
=

1

3

which, of course, is exactly the same result.



(c) an = n
ln(n)

solution:

In this case, for “large” n,

an = n
ln(n) → ∞∞ =∞

(Note this is not indeterminate!) Therefore lim
n→∞n

ln(n) = ∞, i.e. the limit
does not exist!



2. (25 Points) Determine whether each of the following series converges absolutely, con-
verges conditionally, or diverges. (Identify the test(s) used in each case):

(a)
∞X
n=1

(−1)n√
n2 + 4

solution:

Observe that this is an alternating series, and that

|an| = 1√
n2 + 4

→ 1√
n2
=
1

n

and
∞X
n=1

1

n
diverges by the p-test. However, clearly

|an+1| = 1p
(n+ 1)2 + 4

< |an| = 1√
n2 + 4

and lim
n→∞ |an| = 0

and therefore, by the alternating series test, this series converges (but only
conditionally, in view of our earlier result).

(b)
∞X
n=1

√
n

n2 + 3

solution:

Observe this is a series of nonnegative terms. Moreover, for “large” n,

an =

√
n

n2 + 3
→
√
n

n2
=

1

n3/2

But
∞X
n=1

1

n3/2
converges by the p-test, since p = 3/2 > 1. Therefore the

original series converges (absolutely, since the terms are already nonnegative)
by the limit comparison test.



(c)
∞X
k=1

(−1)k k
2 + 1

k2 + 4

solution:

Observe that, for “large” k,

ak = (−1)k k
2 + 1

k2 + 4
→ (−1)k k

2

k2
= (−1)k 6= 0

Therefore, the series must diverge.

(d)
∞X
n=1

(n!)2

(2n)!

solution:

Observe ∞X
n=1

(n!)2

(2n)!
=⇒ an =

(n!)2

(2n)!
> 0

In this case, its not obvious how an ‘looks” for “large” n. Therefore, because
of the factorials, we should try the ratio test. Proceeding

an+1
an

=

((n+1)!)2

(2n+2)!

(n!)2

(2n)!

=
(n+ 1)! (n+ 1)! (2n)!

n! n! (2n+ 2)!
=

(n+ 1)(n+ 1)

(2n+ 2)(2n+ 1)

Therefore

lim
n→∞

an+1
an

= lim
n→∞

(n+ 1)(n+ 1)

(2n+ 2)(2n+ 1)
=
1

4
< 1

and so by the ratio test, the series converges (and absolutely, since the terms
are already positive).



3. (10 Points) Find the radius and open interval of convergence of the Series

∞X
n=2

en

n2
(x+ 1)n

solution:

This has the form of a standard power series, i.e.

∞X
n=0

cn(x− a)n with c0 = c1 = 0 , cn =
en

n2
, n ≥ 2 , a = −1

Therefore, the radius of convergence is

ρ = lim
n→∞

¯̄̄̄
cn
cn+1

¯̄̄̄
= lim

n→∞

¯̄̄̄
¯ en

n2

en+1

(n+1)2

¯̄̄̄
¯ = lim

n→∞
(n+ 1)2

n2 e

=
1

e
lim
n→∞

(n+ 1)2

n2
=
1

e
(1) =

1

e

Therefore, ρ = 1/e and the series converges for

|x+ 1| < 1

e
=⇒ −1− 1

e
< x < −1 + 1

e



4. (25 Points) a. Write the first three terms (i.e. up through n = 2) of the MacLaurin
series expansion for:

f(x) = ln(1 + 3x).

solution:

For a MacLaurin series, we have, by definition, a = 0, and so we can then
create the table

n f (n)(x) f (n)(a) cn

0 ln(1 + 3x) ln(1) = 0 0

1 3
1+3x

3
1+3(0) = 3 3

2 − 9
(1+3x)2 − 9

(1+3(0))2 = −9 − 9
2! = − 9

2

3 54
(1+3x)3

54
(1+3(0))3 = 54

54
3! = 9

Therefore the first three terms of the MacLaurin series are

f(x) = ln(1 + 3x) =
∞X
n=0

cnx
n = c0 + c1x+ c2x

2 + · · · = 3x− 9
2
x2 + · · ·

b. What would be the maximum error you would expect to find if you were to use
your answer to part a to estimate ln(1.15).

solution:

According to the Taylor Remainder theorem, if we approximate

f(x) = ln(1 + 3x)
.
= 3x− 9

2
x2 =⇒ R2(x) =

f (3)(ξ)

3!
x3

where 0 < ξ < x. But note, from the above table

f (3)(ξ) =
54

(1 + 3ξ)3
=⇒ 0 < f (3)(ξ) ≤ 54 for 0 ≤ ξ ≤ x

Moreover, for f(x) = ln(1 + 3x),

f(x) = ln(1.15) =⇒ (1 + 3x) = 1.15 =⇒ x = 0.05



solution:

Therefore, by the above discussion

R2(0.05) =
f (3)(ξ)

3!
(0.05)3 ≤ 54

3!
(0.05)3 = 9 (0.05)3 = 0.001125

Note

ln(1.15) = .13976194 . . . while 3(0.05)− 9
2
(0.05)2 = .13875000

and therefore the actual error is .00101194..., which is lower than the maximum
computed above.



5. (15 Points) Find the sum of each of the following series:

(a)
∞X
n=0

3−nx2n

solution:

Observe there are no factorials in the denominator here, so there is little
chance this is a “relative” of either the exponential, sine or cosine. By elimina-
tion, that leaves only the geometric. With this as a goal, we can fairly easily
see that ∞X

n=0

3−nx2n =
∞X
n=0

¡
x2
¢n

3n
=

∞X
n=0

µ
x2

3

¶n
which is precisely the geometric series, with r replaced by x2/3, i.e.

∞X
n=0

3−nx2n =
1

1− x2

3

=
3

3− x2

(b)
∞X
n=1

(−1)nx3n
n!

solution:

Here the factorial in the denominator strongly suggests that this is a “rel-
ative” of the exponential, although we’ll also have to address the fact that this
series does not start with n = 0. With these observations, we can fairly easily
see that ∞X

n=1

(−1)nx3n
n!

=
∞X
n=1

¡−x3¢n
n!

which is, except for the starting index, precisely the Taylor/MacLaurin series

for ex
3

. That minor problem, however, is easily fixed, i.e.

∞X
n=1

(−1)nx3n
n!

=
∞X
n=1

¡−x3¢n
n!

=
∞X
n=0

¡−x3¢n
n!

− 1 = e−x3 − 1


